网校教育资源平台

天津市部分区2016-2017学年高二下学期期末考试数学(文)试题(WORD版)

评价文档:
文档评论: 0

相关文档推荐

天津市部分区2016-2017学年高二下学期期末考试数学(文)试题(WORD版)
免费
湖北省宜昌市县域优质高中合作体2016-2017学年高二下学期期末考试数学(文)试题(Word版)
免费
湖北省宜昌市县域优质高中合作体2016-2017学年高二下学期期末考试数学(理)试题(Word版)
免费
【全国校级联考Word】浙江省温州市“十五校联合体”2016-2017学年高二下学期期末联考数学试题
免费
【全国校级联考Word】江西省抚州市金溪一中等七校2016-2017学年高二下学期期末考试(B卷)理数试题
免费
【全国校级联考Word】江西省抚州市金溪一中等七校2016-2017学年高二下学期期末考试(B卷)理数试题
免费
【全国百强校Word】黑龙江省大庆中学2016-2017学年高二下学期期末考试文数试题
免费
【全国百强校word版】山西省怀仁县第一中学(两校区)2016-2017学年高二下学期期末考试物理试题
免费
【全国市级联考word版】四川省凉山州2016-2017学年高二下学期期末检测物理试题(无答案)
免费
【全国市级联考word版】四川省雅安市2016-2017学年高二下学期期末考试物理试题
免费
【全国市级联考Word】广东省阳江市2016-2017学年高二下学期期末检测数学(文)试题
免费
【全国百强校Word】黑龙江省大庆中学2016-2017学年高二下学期期末考试数学(理)试题
免费
【全国市级联考Word】安徽铜陵市2016-2017学年高一下学期期末考试数学试题
免费
【全国市级联考Word】山东省潍坊市2016-2017学年高二下学期期末考试数学(理)试题
免费
【全国市级联考Word】广东省韶关市2016-2017学年高二下学期期末考试数学理试题
免费
【全国百强校Word】吉林省乾安县第七中学2016-2017学年高二下学期期末考试数学(文)试题11
免费
【全国百强校Word】河南省商丘市第一高级中学2016-2017学年高二下学期期末考试数学(理)试题
免费
河北省石家庄市2016-2017学年高二下学期期末考试数学(文)试题(WORD版)
免费
【全国百强校Word】河北省故城县高级中学2016-2017学年高二下学期升级考试(期末)数学(文)试题
免费
【全国市级联考Word】江西省新余市2016-2017学年高二下学期期末质量检测数学(理)试题
免费

高中数学审核员

中国现代教育网
分享到:
10积分 下载
                   中国现代教育网    www.30edu.com  全国最大教师交流平台

    2016-2017  学年天津市部分区高二(下)期末数学试卷(文科)
 

一.选择题(每题       4 分)
1.若   a,b,c∈R,下列命题是真命题的是(  )

A.如果    a>b,那么    ac>bc    B.如果     a>b,c<d,那么       a﹣c>b﹣d

C.如果    a>b,那么    ac2>bc2   D.如果    a>b,那么     an>bn(n∈N*)

2.i 是虚数单位,则           的虚部是(  )

A.1    B.﹣1   C.﹣i   D.i

3.阅读如图的程序框图,运行相应的程序,则输出                       S 的值为(  )


A.31   B.15   C.7    D.3

4.已知集合      A={x||2x﹣1|<3},B={x|x<1,或    x>3},则    A∩B  等于(  )

A.{x|﹣1<x<3}      B.{x|x<2,或    x>3}   C.{x|﹣1<x<1}     D.{x|x<﹣1,或    x>3}

5.用反证法证明命题“若           abc=0,则  a,b,c  中至少有一个为        0”时,假设正确的是(  
)

A.假设    a,b,c  都不为    0  B.假设   a,b,c   不都为   0
C.假设    a,b,c  至多有一个为       0   D.假设    a,b,c  都为  0

6.下列函数中,既在(﹣∞,0)∪(0,+∞)上是偶函数,又在(﹣∞,0)上单调递
减的是(  )
                   中国现代教育网    www.30edu.com  全国最大教师交流平台

A.y=﹣x2    B.y=x﹣1 C.y=﹣exD.y=ln|x|

                           0.02
7.设   a=log2 ,b=log32,c=1.1   ,则  a,b,c  的大小关系是(  )
A.b<a<c    B.a<b<c   C.a<c<b    D.b<c<a

8.若函数     f(x)=|x2﹣4x|﹣a 有 4 个零点,则实数      a 的取值范围是(  )

A.(0,2)       B.(﹣∞,﹣4)     C.(4,+∞)      D.(0,4)

9.设等差数列{an}的前        n 项和为    Sn,则  Sn,S2n﹣Sn,S3n﹣S2n 成等差数列,类比以上结论,

设等比数列{bn}的前

n 项积为   Tn,则(  )

A.Tn,T2n,T3n  成等比数列

B.Tn,T2n﹣Tn,T3n﹣T2n 成等差数列


C.Tn,      ,    成等比数列

D.Tn,T2n﹣Tn,T3n﹣T2n 成等比数列


10.设函数     f(x)=                  ,若  f(a)=f(b)=c(a≠b),且         f′(a)<
0(f′(x)为函数      f(x)的导数),则        a,b,c  的大小关系是(  )
A.c<a<b    B.a<b<c   C.c<b<a    D.b<c<a
 

二.填空题

11.已知回归直线方程为            =0.5x﹣0.18,则当  x=20 时,y 的估计值是           .

12.若由一个      2×2 列联表中的数据计算得           K2 的观测值   k≈6.630,则判断“这两个分类
变量有关系”时,犯错误的最大概率是                      .
参考数据:

     2
 P(K  ≥k0)    0.50   0.40  0.25  0.15   0.10  0.05  0.02  0.010  0.005
                                                      5

     k0       0.45   0.70  1.323 2.07   2.70  3.841 5.02  6.635  7.879
                   中国现代教育网    www.30edu.com  全国最大教师交流平台

                5     8            2     6            4

13.在数列{an}中,a1=1,an+1=2an+1,猜想这个数列的通项公式是                        .

14.函数    y=   在区间[    ,e]上的最小值是             .

15.若   x,y∈R,且   3x+9y=2,则  x+2y 的最大值是          .
 

三.解答题
16.(12   分)已知    i 是虚数单位,且(1+2i)         =3+i.
(1)求    z;
(2)若    z 是关于   x 的方程  x2+px+q=0 的一个根,求实数        p,q  的值.

17.(12   分)已知函数      f(x)=                 .

(1)求    f(f(﹣2))的值;

(2)解不等式       f(x)>2.

18.(12   分)已知函数      f(x)=x2﹣x﹣lnx.

(1)求曲线      y=f(x)在点(1,f(1))处的切线方程;
(2)求函数      f(x)的单调区间.

19.(12   分)(1)若     a>b>0,求证:             >     ;

(2)若    a>0,b<0,且     a+b=1,求       的最小值.
20.(12   分)已知函数      f(x)=x3+ax2+1(a∈R).
(1)当    a>0 时,求函数      f(x)的极值;
(2)若    f(x)在区间[1,2]上单调递减,求             a 的取值范围.
 
                    中国现代教育网      www.30edu.com  全国最大教师交流平台

        天津市部分区             2016~2017      学年度第二学期期末考试
                        高二数学(文科)试卷答案

1.B;2.A;3.B;4.C;5.A;6.D;7.B;8.D;9.C;10.C;


                                  n
11.  9.82    12. 0.025   13. an  2 1    14.  e     15.  0

                 3  i (3  i)(1 2i)
16.解:(Ⅰ)     z                    1 i     ……………………4       分
                1 2i       5
     
         ∴   z  1 i                        ……………………6     分
      (Ⅱ)由题意     (1 i)2  p(1 i)  q  0 ,

           即 ( p  q)  ( p  2)i  0           ……………………9 分

            p  q  0
         ∴         ,解得    p  2,q  2 . ……………………12      分
            p  2  0

17.解:(Ⅰ)     f (2)  2  5  3                ……………………3    分

          f ( f (2))  f (3)  32  4  3  5  2  ……………………6 分

       (Ⅱ)

        当 x  0 时, x2  4x  5  2 , x2  4x  3  0

            ∴ x  3 或 0  x  1               ……………………8     分
        当 x  0 时, x  5  2 ,∴ 3  x  0 .   ……………………10     分

        综上,不等式的解集为{x          | 3  x  1,或x  3}.……………………12      分


                                   1
 18.解:(Ⅰ) 由题意        f (x)  2x 1 ,……………………2         分
                                   x
          f (1)  0 , 切线的斜率   k  f (1)  0 ,        ……………………5      分

         ∴切线方程为       y  0     ……………………6      分
                    中国现代教育网      www.30edu.com  全国最大教师交流平台

    (Ⅱ)函数的定义域为         (0,)     ………………7      分

                      1   2x 2  x 1 (2x 1)(x 1)
        f (x)  2x 1                                 ………………8      分
                      x       x             x

       令  f (x)  0 ,解得 x  1,函数  f (x) 的增区间是    (1,)   ………………10     分

       令  f (x)  0 ,解得 0  x  1 ,函数 f (x) 的减区间是   (0,1)  ………………12     分

                  a2  b2 a  b  (a2  b2 )(a  b)  (a  b)(a2  b2 )
19. (Ⅰ)证法一:                   
                  a2  b2 a  b          (a  b)(a2  b2 )

             (a  b)(a 2  2ab  b 2  a 2  b 2 ) 2ab(a  b)
            =                              =               ……………2     分
                    (a  b)(a 2  b 2 )     (a  b)(a 2  b 2 )

      ∵  a  b  0 ,   ∴ 2ab(a  b)  0,(a  b)(a2  b2 )  0 ……………………4 分

           2ab(a  b)          a2  b2 a  b
       ∴                0 ,即               0
         (a  b)(a2  b2 )     a2  b2 a  b

           a2  b2  a  b
         ∴                                           ……………………6        分
           a2  b2  a  b

        证法二:∵    a  b  0 ,∴ a  b  0 , 2ab  0         ……………………1     分
            a2  b2  a  b            a  b     1
        要证              成立,只需证                       ……………………3        分
            a2  b2  a  b            a2  b2 a  b

         只需证  (a  b)2  a2  b2 ,只需证  2ab  0           ……………………5       分

                          a2  b2  a  b
         ∵ 2ab  0 成立,∴                         ……………………6       分
                          a2  b2  a  b
          4  a   4a  4b  a       4b   a
    (Ⅱ)                   4  (    )         ……………………8       分
          a  b      a     b        a   b
            4b  a      4b  a
         ∵        2        4 ,
            a   b      a   b
                  4b  a
          当且仅当         即 a  2b 时取等号             ……………………10           分
                  a   b
          4  a         4   a                     2     1
        ∴       8,即      的最小值是      8,此时   a   ,b   .………………12      分
          a  b         a   b                     3     3

20.解:(Ⅰ)     f (x)  3x2  2ax  x(3x  2a) ……………………1   分
                 中国现代教育网      www.30edu.com  全国最大教师交流平台

                             2a
  令 f (x)  0 ,得 x  0, 或 x         ……………………2       分
                              3
                              2a
 当 f (x)  0 时, x  0 ,或 x  
                              3
                 2a
 当 f (x)  0 时,    x  0
                  3
 当 x 变化时,    f (x), f (x) 的变化情况如下表:

  x                  2a      2a           2a            0
               (,    )              (   ,0)              (0,)
                      3       3            3
   f (x)                 0            -           0         +

               单调递增                     单调递减        1         单调递增
   f (x)                    4a3
                               1
                            27

                                                ……………………5      分

              2a                  4a3
 所以,当    x     时,  f (x) 有极大值       1;
              3                   27

         当 x  0 时, f (x) 有极小值   1.             ……………………7       分

(Ⅱ)由题意,

   令 f (x)  0 ,即 3x2  2ax  0 在区间[1,2]上恒成立……………………9           分
                3
     所以,   a   x 在区间[1,2]上恒成立,    ……………………10               分
                2
               3      3
    因为   3   x    ,所以   a  3.    ……………………12        分
               2      2
10积分下载